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Abstract 

The viability of solving the structure type of zeolitic and 
layered materials applyin~ multisolution direct methods 
to low-resolution (-~2.2A) powder diffraction data is 
shown. The phases are refined with the tangent formula 
derived from Patterson-function arguments [Rius (1993). 
Acta Cryst. A49, 406--409] and the correct phase sets are 
discriminated with the conventional figures of merit. The 
two test examples presented are (a) the already known 
tetragonal zeolite ZSM-11 (space group 14m2) at 2.3 ,~ 
resolution and (b) the hitherto unknown layer silicate 
RUB-15 (Ibam) at 2.2,~ resolution. In both cases, the 
tetrahedral Si units appear as resolved peaks in the 
Fourier maps computed with the phases of the highest- 
ranked direct-methods solutions. 

1. Introduction 

To understand the physical and chemical properties of 
zeolitic and layered materials, and to retrieve valuable 
information about the synthesis mechanisms, a knowl- 
edge of their crystal structures is a prerequisite. When no 
sufficiently large single crystals are available, the crystal 
structure must be solved from very limited experimental 
data, such as powder diffraction, in combination with 
model building and other experimental techniques, e.g. 
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295i MAS NMR and electron diffraction. In recent years, 
the easier access to synchrotron X-ray sources, the 
existence of programs for extracting integrated intensities 
from high-resolution powder patterns (e.g. Pawley, 1981; 
Baerlocher, 1990) as well as improved computing 
facilities have rendered possible the ab initio solution 
of some highly crystalline zeolite-like compounds by 
direct methods (e.g. Rudolf, Saldarriaga-Molina & 
Clearfield, 1986; McCusker, 1988). The application of 
alternative methods, such as the direct interpretation of 
the Patterson function, is hampered by the relatively 
large number of tetrahedrally coordinated atoms (here- 
after referred to as T) and by the fact that T atoms, e.g. Si, 
are not very much heavier than O atoms, so that the T-T 
interatomic peaks cannot be easily identified in the 
Patterson map. Other alternatives such as the application 
of Patterson search techniques, although viable (Rius & 
Miravitlles, 1988; Gies & Rius, 1995), are far from 
trivial. 

In many cases, zeolites crystallize as microcrystalline 
powders of poor crystallinity. The use of synchrotron 
radiation for these cases is less suitable. In these 
materials, peak broadening due to the sample often 
outweighs instrumental broadening so that only the low- 
resolution intensities can be extracted reliably from their 
powder patterns. This imposes serious limitations on the 
applicability of direct methods. These limitations have 
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been summarized in Sheldrick's empirical rule (Shel- 
drick, 1990) which states that it is very unlikely that the 
structure can be solved by direct methods if less than half 
the number of theoretically measurable reflections in the 
range d = 1.1-1.2A are 'observed' [F > 4o'(F)]. This 
rule can be somewhat relaxed if heavy atoms are present. 
According to this rule, direct methods cannot be applied 
successfully to zeolites if only low-resolution intensity 
data (d > 2.2 ,~) are available. In spite of this belief, and 
due to its practical interest, the possibility of solving 
zeolite-like materials from low-resolution data has been 
investigated. Should the solution be possible, then the 
structure type could be determined from laboratory 
powder data. The subsequent refinement using high- 
resolution intensity data, a step often requiring synchro- 
tron radiation and/or the time-consuming optimization of 
the synthesis conditions, could be restricted to those 
compounds with favourable framework topology. 

2. Theoretical background 

According to their definition, the quasi-normalized 
structure factors are the structure factors of a structure 
consisting of point-like atoms. Conversely, a Fourier 
synthesis with these structure factors as coefficients 
should produce point-like atoms. In practice, however, 
only those intensities up to a given resolution 
rma x*  --2sin0max/2 are accessible to the diffraction 
experiment. Consequently, the atomic peaks found in 
the Fourier map are not point like because of Fourier 
series-termination effects. Their shape, which depends on 
the r*ax value, is given by the Fourier transform 

rmax 

rl(x) = f 4rrr*2[sin(2rrxr*)/2:rxr *] dr* 
r* = 0  

= 4rr[sin(2rrXrmax) -- 27rXrma x cos(27rXrmax)]/(27rx) 3, 

(1) 

where x is the distance to the atomic centre. The 
relationship between the position x 0 of the first zero of 
the O(x) function and rma x is given by 

x 0 "~ 0.72/r~a x. (2) 

Expression (2) indicates that function O(x) is sharp for 
large rma x values and becomes broader for smaller r* m a x  

values. Hence, neighbouring atomic peaks will overlap 
for small enough rma x values. 

As is well known, one of the basic requirements for 
direct methods to be successful is that the dominant 
scatterers are well resolved in the Fourier map. Only then 
are the phase values associated with the structure factors 
of the true and the squared structures similar. Of prime 
interest is the minimum r~a x value necessary for 
producing Fourier maps with the dominant scatterers 
well resolved. If the diffraction data do not reach this 
minimum value, it is improbable that direct methods can 

solve the structure. Obviously, the minimum r*m,~x value 
will also depend on the closest separation between 
dominant scatterers. In organic structures, for example, 
the closest separation between C atoms is approximately 
1.44 ,~,. To avoid peak overlap, x 0 cannot be greater than 
half this value, i.e. 0.72A. According to (2), this 
corresponds to r~a x = 1,~-I. This value agrees well 
with Sheldrick's empirical rule. 

What happens in zeolite-like compounds? In such 
compounds, the closest separation between dominant 
scatterers (the Si atoms) is approximately 3.1 ,~. The 
maximum allowed x 0 value is thus 1.55,~,, which 
corresponds to a rma x value of 0.46,A, -l .  This simple 
observation is of practical importance since it means that 
direct methods should solve zeolite-like structures using 
the intensities extracted from the low portion of the 
powder diffraction pattern (r~a x = 0.46 ,~-I is equivalent 
to 20 = 41.5 ° for Cu Koq radiation). This portion is less 
affected by peak overlap problems so that, even with 
powder patterns measured on laboratory diffractometers, 
an almost complete intensity data set can be obtained. To 
simplify the above analysis, the presence of bridging O 
atoms, i.e. those that are common to two tetrahedra, has 
not been considered. Although the O atoms are weaker 
scatterers than the Si atoms, their presence could 
adversely affect the effectiveness of direct methods. As 
will be seen later in the test examples, this is not the case. 

The above discussion suggests the viability of solving 
zeolite crystal structures by applying low-resolution 
multisolution direct methods. Owing to the small number 
of available intensities, however, the phase-refinement 
procedure must be very robust, i.e. it must actively use as 
many reflections as possible, it should avoid the 
introduction of complicated weighting schemes which 
can behave in an unstable way in such critical 
circumstances and, finally, it must be very effective. 
Since the tangent formula derived from Patterson- 
function arguments (Rius, 1993; Rius, Safie, Miravitlles, 
Amig6 & Reventrs, 1995) fulfils all these requirements, 
it has been selected for calculating the test examples. 
This tangent formula is implemented in the XLENS 
program (Rius, 1994). 

3. Test examples 

To test the tangent formula with low-resolution data, two 
representative examples have been selected. The first one 
is the already known tetragonal zeolite ZSM-11. This is a 
challenging example since ZSM-11 is a rather large 
zeolite with a symmorphic space group (l~,m2). The 
second one is a previously unknown layer silicate with 
code name RUB- 15. 

3.1. The zeolite ZSM- 11 

ZSM-11 is a synthetic pentasil zeolite with a body- 
centred tetragonal cell. The structure was solved by 
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combining model building (Kokotailo, Chu, Lawton & 
Meier, 1978) and distance least-squares refinements 
(DLS; Meier & Villiger, 1969). Fig. 1 shows a 
perspective view of ZSM-11 along [010]. A detailed 
refinement of the structure was performed later with the 
intensity data of a powder sample collected at beam line 
X13A at Brookhaven National Laboratory [2 = 
1.3151 A, Ge(111) monochromator; Ge(220) analyzer; 
scanning interval 0.01°20; range 5-70°20; temperature 
363 K; capillary sample] (Fyfe et al., 1989). The refined 
lattice parameters (363 K) are a = 20.067 (1), 
c = 13.411(1)A and the found chemical composition 
per unit cell is 5i960192. The 87 integrated intensities for 

Table 1. Positional parameters of  the Si atoms for 
ZSM-11 

(a) From Fyfe et al. (1989). (b) From visual inspection of the Fourier 
map computed with the phases derived from low-resolution direct 
methods and shifting later the unit-cell origin by 1/2 a (average peak- 
position difference 0.98,~). The sites marked * are half-occupied to 
compensate for the increased multiplicity. 

(a) (b) 

x y z x y z 
Si(1) 0.078 x 0 0.082 0.031 0.968* 
Si(2) 0.186 0.121 0.855 0.147 0.125 0.802 
Si(3) 0.078 0.222 0.357 0.078 0.218 0.284 
Si(4) 0.220 0.312 0.640 0.196 0.296 0.629 
Si(5) 0.195 0.423 0.492 0.176 0.438 0.517 
Si(6) 0.194 x 1/2 0.159 0.218 0.457* 
Si(7) 0.076 0.382 0.359 0.996 0.375 0.338 

Fig. 1. ZSM-11. Perspective view along [010] of a portion of the 
tetragonal framework topology. Only the Si atoms are repre- 
sented. 

the direct-methods test calculations were extracted from 
this preferred-orientation-free pattern (20ma x --32.5 °) 
with the program MUST,  a local program of ICMAB 
that fits Pearson VII profde functions. These intensities 
were introduced in XLENS with the overall B fixed at 
5.5 ,~2 and the phases of the 25 strongest E values refined 
[ 181 triplets of the s-s-s  type (s = strong)]. The program 
automatically selected the 20 weakest reflections for their 
active use during the phase refinement [291 triplets of the 
w-s - s  type (w = weak); (EH) = 0.93] (Rius et al., 1995). 
The number of refmed sets was 100 and the number of 
cycles was 15. Inspection of the Fourier map computed 
with the phase set possessing the best combined figure of 
merit (CFOM) indicates the existence of two types of 
peaks: the first constituted by peaks at approximately the 
correct positions (Table 1) and the second formed by 
strong incorrect maxima localized on the mirror planes 
x = 0 and x = 1/2 or, more specifically, in the centres of 
the channels of the structure. Fig. 2 is the image obtained 
by superposition of the Fourier sections from y = 2/32 to 
14/32. The peaks in Fig. 2 can be easily identified, 
comparing Figs. 1 and 2. 

Fig. 2. ZSM-11. Superimposed Fourier sections (y = 2/32 to 14/32) 
computed with the phases obtained applying direct methods to the 
lowest po t ion  of the synchrotron powder data (20ma ~ = 32.5°; 
2 = 1.315A). The Si tetrahedra appear as isolated peaks. Their 
coordinates are listed in Table 1. To visualize the correspondence 
between found and refined peak positions, compare Figs. 1 and 2. 
The large broad peaks within the channels at x = 0 and x = 1/2 are 
spurious. The image was obtained with the program FAN 
(Vernoslova & Lunin, 1993). 

3.2. The layered material RUB-15 

In view of the promising results achieved with ZSM- 
11, the same strategy was applied to the determination of 
the structure of RUB-15. The powder diffraction pattern 
was measured on a Siemens diffractometer at the Ruhr 
University (Bochum) [2 = 1.54060,~,, Ge(111) mono- 
chromator; scanning interval 0.02°20; counting time 30 s; 
range 5-70°20; temperature 293 K; capillary sample]. 

The powder pattern was indexed on an orthorhombic 
unit cell with a = 27.911, b = 8.408, c = 11.516,~, 
V = 2703,~ 3 using the program TREOR (Wemer, 
Erikson & Westdahl, 1985). According to the systematic 
absences, the cell is body centred and the most likely 
space group is Ibam. With all the prior experimental 
information about the compound taken into account, the 
expected numbers of Si atoms and template molecules in 
the unit cell are approximately 28 and 8, respectively. 
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The integrated intensities were extracted with 
EXTRACT (Baerlocher, 1990) using an experimental 
peak-shape function (FWHM=0.08°20). Above 20 = 
41 °, most of the integrated intensities supplied by 
EXTRACT have associated standard deviations that are 
too large. Consequently, they were not considered. The 
76 low-resolution reflections were introduced in XLENS 
with the overall B fixed at 3.5 ,~2. The program was 
selected to refine the phases of the 20 strongest E values 
(65 triplets of the s-s-s  type). The program automatically 
selected the 16 weakest reflections for their active use 
during the phase refinement (98 triplets of the w-s-s  
type; (E H) = 1.0) (Rius et al., 1995). The number of 
refined sets was 100 and the number of calculated cycles 
in each set was 13. The projection of the Fourier map for 
the solution with the highest CFOM is shown in Fig. 3. It 
can be clearly seen that the structure consists of silicate 
sheets (a perspective view of one sheet is given in Fig. 4) 
and that the Si tetrahedra appear as resolved spheres 
(Table 2). The relative strength of the O atoms can be 
estimated by comparing one of these spheres with the 
spheres representing the non-bridging or terminal O 
atoms of the sheet. Inspection of Fig. 3 also allows one to 
distinguish quite clearly, between the sheets, the 
tetrahedral tetramethylammonium molecules positioned 
on the mirror planes (eight in the unit cell). The nature of 
the remaining peaks is less clear (Table 2). The 
subsequent Rietveld refnement has revealed that O(1) 
is a tetrahedrally coordinated water molecule, and that 
Q1 and Q2 are spurious peaks. Fig. 5 reproduces the 
observed and the calculated powder diffraction patterns 
(present Rwp value 17%). 

To check the reproducibility of the direct-methods 
results, the phase-refinement control parameters were 

Table 2. Peaks found in the Fourier map of the direct- 
methods solution with the highest combined figure of 

merit for RUB- 15 

Only the low-resolution intensities extracted from a laboratory powder 
pattern have been used (20ma x = 41°; CuKot t radiation). 

Site x y z 

Si(l) 16(k) 0.056 0.250 0.381 
Si(2) 4(b) 0 1/2 1/4 
Si(3) 4(a) 0 0 I/4 
N 8(./) 0.146 0.292 0 
O( 1 ) 16(k) 0.300 0.291 0.118 
Q i 8(j) 0.250 0.458 0 
Q2 8(e) 1/4 1/4 1/4 

slightly changed. Inspection of the best sets of refined 
phases again showed the same solution. 

4. Concluding remarks 

The above results can be summarized in the following 
conclusions: 

(a) In principle, it is possible to determine the 
connectivity pattern of tetrahedral frameworks and sheets 
applying multisolution direct methods to low-resolution 
intensity data. The lowest resolution limit is r~a x --~ 
0.46 A -1, i.e. all reflections with d spacings greater than 
2.2 A are required. At this resolution, the tetrahedral Si 
units appear as well resolved peaks in the Fourier map. 
Obviously, the higher the resolution limit of the data, the 
better direct methods will work. One difficulty that can 
arise when only low-resolution data are available is the 
correct estimation of the space group. 

(b) The tangent formula derived from Patterson- 
function argument (Rius, 1993) is well suited for phase 

Fig. 3. RUB-15. Superimposed Fourier sections ( y = 0  to 0.45) 
showing the silicate sheets normal to [100]. The phases were 
obtained from low-resolution direct methods (d > 2.2 A). At this 
resolution, the tetrahedral Si units appear as spheres. The 
tetramethylanmaonium molecules are placed on the mirror planes. 
The peak coordinates are listed in Table 2. Image obtained with FAN 
(Vernoslova & Lunin, 1993). 

B 

O r, 

X : 1 / 2  

Fig. 4. RUB-15. Silicate sheet built of  four- and six-membered rings in 
the ratio 1:1 (large circles: Si atoms; small circles: O atoms). 
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refinement with low-resolution intensity data. The 
appearance of large incorrect maxima concentrated on 
the non-translational symmetry elements in the Fourier 
map of ZSM-11 is surely related to the fact that 14m2 is 
symmorphic. This effect may be favoured by the small 
number of reflections involved in the phase refinement 
and/or by pseudosymmetry problems, relevant to this 

compound, and requires further investigation. In ZSM- 
11, these incorrect peaks can be easily identified so that 
the interpretation of the remaining peaks, i.e. the Si units, 
is not greatly disturbed. 

(c) The traditional figures of merit work well. In both 
test examples, the solutions with the highest CFOM are 
the correct ones. 
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Fig. 5. RUB-15. Observed (top), calculated (middle) and difference (bottom) profiles for the provisional Rietveld refinement. To facilitate 
comparison, the scale for the interval 25-45 ° has been increased by a factor of four. 
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(d) The Fourier maps must be visually inspected. 
Automated peak search routines can often produce 
misleading results. Although low-resolution data are 
very sensitive to the presence of atomic peaks, these can 
appear slightly shifted from the correct position. This is 
especially true for structures possessing non-centrosym- 
metric space groups. Effectively, since general reflec- 
tions have no restricted phase values, small phase errors 
associated with the direct-methods application cannot be 
eliminated, thus producing inaccuracies in the atomic 
positioning in the E map. For these space groups, average 
atomic displacements of the order of 0.5 A should be 
considered normal. 

This work was supported by the Spanish DGICYT 
(Project PB92-010) and the acci6n integrada hispano- 
alemana HA94-086. The authors are greatly indebted to 
Drs E. A. Vemoslova and V. Yu. Lunin, as well as to Dr 
A. Urzhumtsev for kindly supplying the Frog PC series 
programs. 
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Abstract 

Simulated annealing has traditionally been used to refine 
structural determinations. It is shown in this paper that 
it can be used for ab initio phasing. Several examples 
are given to illustrate the methodology and capability of 
this method. The possibility of extending the method to 
treat macromolecules is discussed. 

Introduction 

Traditional direct methods are based on the probability 
distribution of the phases of the structure factors given 
their magnitudes. The width of the distribution increases 
with the number of atoms N in the unit cell. Therefore, 
the method is not practical for large N (Hauptman, 
1986) but there are many interesting large molecules 
whose structures remain to be resolved. Thus, it is 
very desirable to explore alternate methods for ab initio 
phasing. Semenovskaya, Khachaturyan & Khachaturyan 
(1985) have proposed a statistical mechanics approach. 
They employed stochastic dynamic equations to gen- 
erate atom positions that optimally fit the measured 
intensities. In essence, this is a dynamical simulated- 
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annealing approach. They applied this approach to a 
unit cell containing eight independent atoms. In this 
paper, we report more extensive calculations of direct 
structural determination using simulated annealing. Our 
results suggest that this method is a promising alternate 
to conventional direct methods. More importantly, it is 
very straightforward to incorporate symmetry and other 
partial knowledge about the molecules in this scheme. 
Thus, it is potentially possible to extend the method to 
treat macromolecules such as proteins. 

This paper is organized as follows: We first discuss 
the methodology in general. The three molecules on 
which the method has been successfully tested are then 
described. Test results on a new system that has not 
been solved by direct methods are also reported. Based 
on these results, comparison with conventional direct 
methods and some alternate methods is made. Finally, 
we speculate on the possibility of applying the formalism 
to protein crystallography. 

Methodology 

The idea of a simulated-annealing approach to the X-ray 
phase problem is very simple. Basically, the method con- 
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