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Abstract

The viability of solving the structure type of zeolitic and
layered materials applying multisolution direct methods
to low-resolution (~2.2 A) powder diffraction data is
shown. The phases are refined with the tangent formula
derived from Patterson-function arguments [Rius (1993).
Acta Cryst. A49, 406-409] and the correct phase sets are
discriminated with the conventional figures of merit. The
two test examples presented are (@) the already known
tetragonal zeolite ZSM-11 (space group /4m2) at 2.3 A
resolution and (b) the pitheno unknown layer silicate
RUB-15 (Ibam) at 2.2 A resolution. In both cases, the
tetrahedral Si units appear as resolved peaks in the
Fourier maps computed with the phases of the highest-
ranked direct-methods solutions.

1. Introduction

To understand the physical and chemical properties of
zeolitic and layered materials, and to retrieve valuable
information about the synthesis mechanisms, a knowl-
edge of their crystal structures is a prerequisite. When no
sufficiently large single crystals are available, the crystal
structure must be solved from very limited experimental
data, such as powder diffraction, in combination with
model building and other experimental techniques, e.g.

©1995 International Union of Crystallography
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#Si MAS NMR and electron diffraction. In recent years,
the easier access to synchrotron X-ray sources, the
existence of programs for extracting integrated intensities
from high-resolution powder patterns (e.g. Pawley, 1981;
Baerlocher, 1990) as well as improved computing
facilities have rendered possible the ab initio solution
of some highly crystalline zeolite-like compounds by
direct methods (e.g. Rudolf, Saldarriaga-Molina &
Clearfield, 1986; McCusker, 1988). The application of
alternative methods, such as the direct interpretation of
the Patterson function, is hampered by the relatively
large number of tetrahedrally coordinated atoms (here-
after referred to as 7) and by the fact that T atoms, e.g. Si,
are not very much heavier than O atoms, so that the 7-T
interatomic peaks cannot be easily identified in the
Patterson map. Other alternatives such as the application
of Patterson search techniques, although viable (Rius &
Miravitlles, 1988; Gies & Rius, 1995), are far from
trivial.

In many cases, zeolites crystallize as microcrystalline
powders of poor crystallinity. The use of synchrotron
radiation for these cases is less suitable. In these
materials, peak broadening due to the sample often
outweighs instrumental broadening so that only the low-
resolution intensities can be extracted reliably from their
powder patterns. This imposes serious limitations on the
applicability of direct methods. These limitations have
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been summarized in Sheldrick’s empirical rule (Shel-
drick, 1990) which states that it is very unlikely that the
structure can be solved by direct methods if less than half
the number of theoretically measurable reflections in the
range d = 1.1- 1.2 A are ‘observed’ [F > 4o(F)]. This
rule can be somewhat relaxed if heavy atoms are present.
According to this rule, direct methods cannot be applied
successfully to zeolites if only low-resolution intensity
data (d > 2.2 A) are available. In spite of this belief, and
due to its practical interest, the possibility of solving
zeolite-like materials from low-resolution data has been
investigated. Should the solution be possible, then the
structure type could be determined from laboratory
powder data. The subsequent refinement using high-
resolution intensity data, a step often requiring synchro-
tron radiation and/or the time-consuming optimization of
the synthesis conditions, could be restricted to those
compounds with favourable framework topology.

2. Theoretical background

According to their definition, the quasi-normalized
structure factors are the structure factors of a structure
consisting of point-like atoms. Conversely, a Fourier
synthesis with these structure factors as coefficients
should produce point-like atoms. In practice, however,
only those intensities up to a given resolution
rr..=2sinf,, /A are accessible to the diffraction
experiment. Consequently, the atomic peaks found in
the Fourier map are not point like because of Fourier
series-termination effects. Their shape, which depends on
the r?,, value, is given by the Fourier transform

n(x) = "fx 4mr?sin(2mxr*)/2mxr*] dr*

r*=0

= An[sin(Raxrt,,,) — 27Xk, cOS(2mxrt, )]/ (27x)’,

Q)

where x is the distance to the atomic centre. The
relationship between the position x, of the first zero of
the n(x) function and r},,, is given by

Xy = 0.72/r} - 2)

Expression (2) indicates that function 7n(x) is sharp for
large r},, values and becomes broader for smaller ).,
values. Hence, neighbouring atomic peaks will overlap
for small enough r},,, values.

As is well known, one of the basic requirements for
direct methods to be successful is that the dominant
scatterers are well resolved in the Fourier map. Only then
are the phase values associated with the structure factors
of the true and the squared structures similar. Of prime
interest is the minimum r},, value necessary for
producing Fourier maps with the dominant scatterers
well resolved. If the diffraction data do not reach this
minimum value, it is improbable that direct methods can
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solve the structure. Obviously, the minimum r},,, value
will also depend on the closest separation between
dominant scatterers. In organic structures, for example,
the closest separation between C atoms is approximately
1.44 A. To avoid peak overlap, x, cannot be greater than
half this value, i.e. O. 72A According to (2), this
corresponds to r},. = 1A-". This value agrees well
with Sheldrick’s empirical rule.

What happens in zeolite-like compounds? In such
compounds, the closest separatlon between dominant
scatterers (the Si atoms) is approxnmately 3.1 A. The
maximum allowed x, value is thus 1 55A, which
corresponds to a ry,, value of 0.46 A~'. This simple
observation is of practical importance since it means that
direct methods should solve zeolite-like structures using
the intensities extracted from the low pomon of the
powder diffraction pattern (r},,, = 0.46 A~ is equivalent
to 26 = 41.5° for Cu K«, radiation). This portion is less
affected by peak overlap problems so that, even with
powder patterns measured on laboratory diffractometers,
an almost complete intensity data set can be obtained. To
simplify the above analysis, the presence of bridging O
atoms, i.e. those that are common to two tetrahedra, has
not been considered. Although the O atoms are weaker
scatterers than the Si atoms, their presence could
adversely affect the effectiveness of direct methods. As
will be seen later in the test examples, this is not the case.

The above discussion suggests the viability of solving
zeolite crystal structures by applying low-resolution
multisolution direct methods. Owing to the small number
of available intensities, however, the phase-refinement
procedure must be very robust, i.e. it must actively use as
many reflections as possible, it should avoid the
introduction of complicated weighting schemes which
can behave in an unstable way in such critical
circumstances and, finally, it must be very effective.
Since the tangent formula derived from Patterson-
function arguments (Rius, 1993; Rius, Saiie, Miravitlles,
Amigé & Reventos, 1995) fulfils all these requirements,
it has been selected for calculating the test examples.
This tangent formula is implemented in the XLENS
program (Rius, 1994).

3. Test examples

To test the tangent formula with low-resolution data, two
representative examples have been selected. The first one
is the already known tetragonal zeolite ZSM-11. This is a
challenging example since ZSM-11 is a rather large
zeolite with a symmorphic space group (/4m2). The
second one is a previously unknown layer silicate with
code name RUB-15.

3.1. The zeolite ZSM-11

ZSM-11 is a synthetic pentasil zeolite with a body-
centred tetragonal cell. The structure was solved by
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The integrated intensities were extracted with
EXTRACT (Baerlocher, 1990) using an experimental
peak-shape function (FWHM =0.08°26). Above 26 =
41°, most of the integrated intensities supplied by
EXTRACT have associated standard deviations that are
too large. Consequently, they were not considered. The
76 low-resolution reflections were introduced in XLENS
with the overall B fixed at 3.5A2 The program was
selected to refine the phases of the 20 strongest E values
(65 triplets of the s—s—s type). The program automatically
selected the 16 weakest reflections for their active use
during the phase refinement (98 triplets of the w—s—s
type; (Ey) = 1.0) (Rius et al.,, 1995). The number of
refined sets was 100 and the number of calculated cycles
in each set was 13. The projection of the Fourier map for
the solution with the highest CFOM is shown in Fig. 3. It
can be clearly seen that the structure consists of silicate
sheets (a perspective view of one sheet is given in Fig. 4)
and that the Si tetrahedra appear as resolved spheres
(Table 2). The relative strength of the O atoms can be
estimated by comparing one of these spheres with the
spheres representing the non-bridging or terminal O
atoms of the sheet. Inspection of Fig. 3 also allows one to
distinguish quite clearly, between the sheets, the
tetrahedral tetramethylammonium molecules positioned
on the mirror planes (eight in the unit cell). The nature of
the remaining peaks is less clear (Table 2). The
subsequent Rietveld refnement has revealed that O(1)
is a tetrahedrally coordinated water molecule, and that
Q1 and Q2 are spurious peaks. Fig. 5 reproduces the
observed and the calculated powder diffraction patterns
(present R,,, value 17%).

To check the reproducibility of the direct-methods
results, the phase-refinement control parameters were

BB o~ rS D A
Fig. 3. RUB-15. Superimposed Fourier sections (y =0 to 0.45)
showing the silicate sheets normal to [100]. The pt}ases were
obtained from low-resolution direct methods (d > 2.2 A). At this
resolution, the tetrahedral Si units appear as spheres. The
tetramethylammonium molecules are placed on the mirror planes.
The peak coordinates are listed in Table 2. Image obtained with FAN
(Vemoslova & Lunin, 1993).
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Table 2. Peaks found in the Fourier map of the direct-
methods solution with the highest combined figure of
merit for RUB-15

Only the low-resolution intensities extracted from a laboratory powder
pattern have been used (26,,,, = 41°; CuKa, radiation).

Site x y z
Si(1) 16(k) 0.056 0.250 0.381
Si(2) 4(b) 0 12 1/4
Si(3) 4(a) 0 0 1/4
N 8()) 0.146 0.292 0
o) 16(k) 0.300 0.291 0.118
01 8() 0.250 0.458 0
Q2 8(e) 1/4 1/4 1/4

slightly changed. Inspection of the best sets of refined
phases again showed the same solution.

4. Concluding remarks

The above results can be summarized in the following
conclusions:

(a) In principle, it is possible to determine the
connectivity pattern of tetrahedral frameworks and sheets
applying multisolution direct methods to low-resolution
intensity data. The lowest resolution limit is ry,, =
0.46A7", i.e. all reflections with d spacings greater than
2.2 A are required. At this resolution, the tetrahedral Si
units appear as well resolved peaks in the Fourier map.
Obviously, the higher the resolution limit of the data, the
better direct methods will work. One difficulty that can
arise when only low-resolution data are available is the
correct estimation of the space group.

(b) The tangent formula derived from Patterson-
function argument (Rius, 1993) is well suited for phase

X=1/2

Fig. 4. RUB-15. Silicate sheet built of four- and six-membered rings in
the ratio 1:1 (large circles: Si atoms; small circles: O atoms).
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refinement with low-resolution intensity data. The
appearance of large incorrect maxima concentrated on
the non-translational symmetry elements in the Fourier
map of ZSM-11 is surely related to the fact that /4m?2 is
symmorphic. This effect may be favoured by the small
number of reflections involved in the phase refinement
and/or by pseudosymmetry problems, relevant to this

40000 3
70000 3
60000 7
$0000 3
40000
30000 3

30000 3

J& )
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compound, and requires further investigation. In ZSM-
11, these incorrect peaks can be easily identified so that
the interpretation of the remaining peaks, i.e. the Si units,
is not greatly disturbed.

(c) The traditional figures of merit work well. In both
test examples, the solutions with the highest CFOM are
the correct ones.

20000
15000 1
10000

5000 1
4

w

T T T T T Y T Y

235 26 27 28 29 30 31 32 33 N

T T T

IS 36 37 38 39 40 41 42 43 44 4S

2 Theta

Fig. 5. RUB-15. Observed (top), calculated (middle) and difference (bottom) profiles for the provisional Rietveld refinement. To facilitate
comparison, the scale for the interval 25-45° has been increased by a factor of four.
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(d) The Fourier maps must be visually inspected.
Automated peak search routines can often produce
misleading results. Although low-resolution data are
very sensitive to the presence of atomic peaks, these can
appear slightly shifted from the correct position. This is
especially true for structures possessing non-centrosym-
metric space groups. Effectively, since general reflec-
tions have no restricted phase values, small phase errors
associated with the direct-methods application cannot be
eliminated, thus producing inaccuracies in the atomic
positioning in the £ map. For these space groups, average
atomic displacements of the order of 0.5 A should be
considered normal.

This work was supported by the Spanish DGICYT
(Project PB92-010) and the accién integrada hispano-
alemana HA94-086. The authors are greatly indebted to
Drs E. A. Vemoslova and V. Yu. Lunin, as well as to Dr
A. Urzhumtsev for kindly supplying the Frog PC series
programs.
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Abstract

Simulated annealing has traditionally been used to refine
structural determinations. It is shown in this paper that
it can be used for ab initio phasing. Several examples
are given to illustrate the methodology and capability of
this method. The possibility of extending the method to
treat macromolecules is discussed.

Introduction

Traditional direct methods are based on the probability
distribution of the phases of the structure factors given
their magnitudes. The width of the distribution increases
with the number of atoms N in the unit cell. Therefore,
the method is not practical for large N (Hauptman,
1986) but there are many interesting large molecules
whose structures remain to be resolved. Thus, it is
very desirable to explore alternate methods for ab initio
phasing. Semenovskaya, Khachaturyan & Khachaturyan
(1985) have proposed a statistical mechanics approach.
They employed stochastic dynamic equations to gen-
erate atom positions that optimally fit the measured
intensities. In essence, this is a dynamical simulated-

© 1995 International Union of Crystallography
Printed in Great Britain — all rights reserved

annealing approach. They applied this approach to a
unit cell containing eight independent atoms. In this
paper, we report more extensive calculations of direct
structural determination using simulated annealing. Our
results suggest that this method is a promising alternate
to conventional direct methods. More importantly, it is
very straightforward to incorporate symmetry and other
partial knowledge about the molecules in this scheme.
Thus, it is potentially possible to extend the method to
treat macromolecules such as proteins.

This paper is organized as follows: We first discuss
the methodology in general. The three molecules on
which the method has been successfully tested are then
described. Test results on a new system that has not
been solved by direct methods are also reported. Based
on these results, comparison with conventional direct
methods and some alternate methods is made. Finally,
we speculate on the possibility of applying the formalism
to protein crystallography.

Methodology

The idea of a simulated-annealing approach to the X-ray
phase problem is very simple. Basically, the method con-
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